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The Rydberg spectrum of ArH and KrH:
calculation by R-matrix and generalized

quantum defect theory

B y C h. Jungen1, A. L. Roche2 and M. Arif1†
1Laboratoire Aimé Cotton du CNRS,

Université de Paris-Sud, 91405 Orsay, France
2Laboratoire de Photophysique Moléculaire du CNRS,

Université de Paris-Sud, 91405 Orsay, France

The generalized ligand field approach developed recently by Arif and others for the
description of the electronic structures of the alkaline earth halides is used to calculate
the electronic spectrum of ArH and of KrH from the ground state up near the
ionization limit. The ion core is represented as a closed-shell protonated rare gas
atom from which the lone electron is scattered. The resulting level energies (effective
principal quantum numbers) are in good agreement with the available experimental
data and constitute the first global theoretical calculation of the electronic spectra
of ArH and KrH. Polarization of the rare gas atom by the ligand proton is shown to
be significant.

1. Introduction

The rare gas monohydrides are all known to have unstable ground states, but they all
possess extended systems of stable excited states which are all Rydberg states. They
are therefore commonly referred to as ‘Rydberg molecules’ and as such belong to a
particular class of ‘excimer’ systems (Herzberg 1987). The experimentally observed
Rydberg series of the rare gas hydrides have progressively emerged in recent years
from numerous studies of Rydberg–Rydberg emission bands in the visible and in-
frared spectral regions, studied by Fourier transform spectroscopy (Dabrowski et al.
1996; Dabrowski et al. 1997a, b; Dabrowski & Sadovskii 1994 and references therein).

The question then arises, as to where the Rydberg electron comes from: is it excited
from the hydrogen atom or from the rare gas atom? In other terms, are the rare gas
hydrides better described as (Rg · H+)e− or as (Rg+ · H)e−? At the crudest level of
approximation we can answer this question by comparing the ionization energies of
the various rare gas atoms with that of a hydrogen atom. This is done in table 1 and
figure 1 (dotted lines) where it can be seen that HeH, NeH and ArH can probably be
regarded as Rydberg molecules built on a protonated rare gas atom core (Rg ·H+),
whereas this description appears as doubtful for KrH and frankly incorrect for XeH.

We can improve this picture by taking account of polarization in the molecular
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1482 Ch. Jungen, A. L. Roche and M. Arif

Table 1. Ionization energies and dipole polarizabilities of rare gas atoms

IP a α b
d R+ c

e E(Rg+ ·H) d E(Rg ·H+) e ∆E f Q g
1 α

(eff) h
d

H 0.999 4.5
He 1.807 1.32 1.48 0.87 0.72 0.15 0.24 1.10
Ne 1.585 2.67 1.88 1.22 0.79 0.43 0.29 2.32
Ar 1.158 10.76 2.43 1.03 0.68 0.35 −0.33 9.14
Kr 1.029 16.78 2.68 0.94 0.67 0.27 −0.57 13.70
Xe 0.892 27.32 3.04 0.84 0.68 0.16 −0.89 22.25

aIonization energy in Rydbergs (Moore 1971).
bAtomic dipole polarizability (a3

0, Cuthbertson & Cuthbertson 1932).
cEquilibrium bond distance of (RgH)+ (a0, Rosmus & Reinsch 1980; Rosmus 1979; Klein &
Rosmus 1984).
dRydbergs, equation (1.1 b).
eRydbergs, equation (1.1 a).
fRydbergs, E(Rg+ ·H)− E(Rg ·H+).
gAb initio dipole moment of (RgH)+ with respect to the molecular midpoint (a0, Klein & Rosmus
1984).
h‘Effective’ atomic dipole polarizability (a3

0), deduced by inverting equation (2.10 b) with the ab
initio values for R and Q1 from columns 4 and 8, respectively.

Figure 1. Stability of the protonated rare gas configuration for various rare gas hydride ions.
The dots/broken lines correspond to the differences of ionization potentials IP(Rg)−IP(H). The
squares/full lines correspond to equation (1.1) which also accounts for the polarization of the
rare gas atom by the proton. Positive values ∆E indicate that the protonated rare gas structure
is favoured.

ion core. The energy of a protonated rare gas atom is thus approximated by

E(Rg ·H+) = (IP)H − (αRg/R
4), (1.1 a)

where αRg is the dipole polarizability of the free rare gas atom in units of a3
0, R is

the equilibrium internuclear distance of the ion core in units of a0 and the energy is
in Rydberg units. The inverse description yields

E(Rg+ ·H) = (IP)Rg − (αH/R
4). (1.1 b)
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The Rydberg spectrum of ArH and KrH 1483

Using the known values for α and R listed in table 1 we plot in figure 1 (full lines)
the difference ∆E = E(Rg+ · H) − E(Rg · H+), which tells us how much more
stable the protonated rare gas atom configuration is expected to be compared to the
configuration Rg+ · H. While, of course, it still gives only a rough account of the
reality, figure 1 does indicate that all rare gas hydride Rydberg states, from HeH
through to XeH, should near equilibrium correspond to a protonated rare gas atom
core with an associated electron. The reason is that the heavier the rare gas atom,
the larger is its polarizability, in such a way that the configuration Rg ·H+ is stable in
spite of the reduced value of (IP)Rg. Further evidence for the qualitative correctness
of this picture comes from consideration of the core dipole moments which are known
quite precisely by ab initio calculations, as will be discussed in §3 b.

In this paper we present calculations of the Rydberg series of ArH and KrH which
are based on the assumption that these can be described as (Rg ·H+)e−. These cal-
culations are complementary to quantum chemical calculations for the same systems
(Petsalakis & Theodorakopoulos 1994). Here we give a multichannel description of
the full Rydberg spectrum of these molecules up near the ionization energy (and, in
principle, of the inelastic electron-core scattering matrices in the electronic contin-
uum beyond), whereas the available quantum chemical calculations are limited to the
lowest few excited states which are calculated individually. Our effective one-electron
approach, on the other hand, while providing a global description of the rare gas hy-
drides near equilibrium, is unable to account for the dissociation behaviour which
involves strong mixing between the (Rg ·H+)e− and (Rg+ ·H)e− configurations.

2. Theory

Our calculations are based on R-matrix theory combined with generalized quan-
tum defect theory and constitute a new application of the generalized ligand field
approach which we developed recently for the alkaline earth halides (in particular,
CaF and BaF) (Arif et al. 1997, subsequently referred to as AJR). These molecules
were described successfully as (M++ · X−)e−, i.e. ‘Rydberg’ molecules possessing a
double closed-shell core with charges Z1 = +2 and Z2 = −1 plus an associated
electron. In the present work we take over the formalism of AJR without change by
simply setting Z1 = 0 and Z2 = +1 in the relevant expressions. A detailed account
of the theory has been given in AJR. In the following we give an abbreviated survey
of the method.

The method of calculation involves separate treatments adapted to various regions
of space. Figure 2 illustrates the partitioning of space which we use.

(a ) Atomic reaction zone I
The atomic zone I corresponds to the rare gas atom and is characterized by corre-

lated motions of the electrons of the rare gas and the additional molecular electron.
We do not attempt here to describe this region in detail, but instead represent its
net effect on the motion of the molecular electron by a boundary condition applied
to each partial wave l at the atom surface. Thus we have

− ∂(r1ψ
I
l )/∂r1

(r1ψI
l )

= −∂(r1ψ
II
l )/∂r1

(r1ψII
l )

= bl(r1) (r1 = r1a), (2.1)

where r1 is the electron distance from the rare gas atom nucleus and r1a the atomic
radius. ψI

l (ε, r1, θ1, φ1) is the wavefunction of the lone electron l emerging from closed-
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1484 Ch. Jungen, A. L. Roche and M. Arif

shell rare gas atom, while ψII
l is the corresponding term in the partial wave expansion

valid in the molecular zone II surrounding the atom.
The quantities bl(r1a) characterize the electron–atom interaction and are equiv-

alent to the elastic electron–atom scattering phase-shifts which are well known as
functions of the electron energy both from experiment and ab initio theory. We shall
see below that an efficient way of evaluating the set of boundary conditions bl in-
volves the determination of a set of pseudo-potentials V (core)

l (r1) which adequately
represent the energy-dependent partial wave asymptotic phase shifts, followed by
numerical integration of the one-electron Schrödinger equation from r1 = 0 out to
r1 = r1a. The logarithmic derivative of each partial wave ψl is thus obtained at this
point.

(b ) Molecular reaction zone II
The zone II in figure 2 is the molecular or ‘reaction’ zone which is intermediate

between the short-range atomic region and the asymptotic Coulombic region. Here
we approximate the electron wavefunction by that of the single molecular electron. Its
motion, however, is non-separable owing to the presence of the additional molecular
core proton. The electron potential energy is represented by the expression

Vl(r1, r2, R) = −
[

2Z1

r1
+

2Z2

r2

]
+
[
− α1f

2
1

1
r4

1
+ α1f1

2Z2 cos θ1

r2
1R

2 − α2f
2
2

1
r4

2
+ α2f2

2Z1 cos θ2

r2
2R

2

]
−4α1f1α2f2

R5

[
Z1 cos θ1

r2
1

+
Z2 cos θ2

r2
2

]
+

2α1f1α2f2

R3r2
1r

2
2

[2 cos θ1 cos θ2 + sin θ1 sin θ2] + V
(core)
l (r1), (2.2)

with the following definitions: r1 and r2 are defined in figure 2. The polar angles
θ1 and θ2 are defined such that θ1 = θ2 = 0 at the molecular midpoint. Z1 and Z2
are the electric charges carried by the two scattering centres and α1 and α2 are the
corresponding dipole polarizabilities. As stated earlier, we take Z1 = 0, Z2 = 1 and
α2 = 0 in the present application. f1 and f2 are the customary cut-off functions for
the polarization potentials of the two centres defined as

f1(r1) = [1− e−(r1/r1c)6
]1/2, (2.3)

with r1c the cut-off radius. Both r1c in equation (2.3) and r1a in equation (2.1) are
measures for the rare gas atom radius and thus r1c ≈ r1a. The two quantities are
distinguished here only because of their different role in the formalism. The five
terms of equation (2.2) correspond, in this order, to the following interactions: (a)
the Coulomb interaction between Z1, Z2 and e−; (b) the energy of the electric dipole
induced on each centre by the electron and by the charge of the other centre; (c) the
dipole–dipole interaction energy of each electron-induced dipole on one centre with
the ion-induced dipole on the other centre; (d) the dipole–dipole interaction energy
of the two electron-induced dipoles; and (e) an l-dependent rare gas atom correction
potential which decreases exponentially outside the core (cf. §3 b).

All the terms that are independent of the position of the electron (such as, for
example, the dipole–dipole interaction energy between the dipoles induced on each
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The Rydberg spectrum of ArH and KrH 1485

Figure 2. Schematic representation of an electron interacting with a protonated rare gas atom:
1, rare gas nucleus; 2, proton; I, atomic zone; II, molecular (‘reaction’) zone; III, asymptotic
zone. The spheres r = r1a, r = r1b and the ellipsoid ξ = ξ0 are the boundaries used in the R
matrix calculation (cf. the text).

centre by the other centre) are considered to be part of the energy of the molecular
ion core and are thus omitted.

The non-separable motion of the molecular electron in the reaction zone II is
treated by setting up a Hamiltonian matrix in terms of a set of basis functions.
We chose a basis defined for r1a 6 r1 6 r1b (see figure 2), where r1b must be
sufficiently large as we will discuss below. The basis consists of spherical free-particle
eigenfunctions of the form

ψ
(λ)
ml (r1, θ1, φ) = Ylλ(θ1, φ)

1
r1

[cml sin(kmlr1) + dml cos(kmlr1)], (ε(λ)
ml = 1

2k
2
ml > 0),

ψ
(λ)
ml (r1, θ1, φ) = Ylλ(θ1, φ)

1
r1

[cmleκmlr1 + dmle−κmlr1 ], (ε(λ)
ml = −1

2κ
2
ml 6 0). (2.4)

The coefficients cml and dml are determined by imposition of specific boundary con-
ditions at r1 = r1a and r1 = r1b. At the inner edge of zone II we impose the set of
conditions equation (2.1), whereas the condition imposed at the outer edge is arbi-
trary but fixed and will be specified in §3 d. For a given set of conditions bl(r1a) and
bl(r1b) we obtain a discrete set of energies ε(λ)

ml (m = 0, 1, . . .) and orthonormalized
eigenfunctions. Details are given in Appendix 1 of AJR. Figure 3 illustrates the lowest
radial basis levels and functions with l = 0 such as used in a typical calculation.

In the next step a Hamiltonian matrix, diagonal in λ, is set up for each λ with
elements given by the volume integrals

H
(λ)
ml,m′l′(R) = +ε(λ)

ml δml,m′l′ +
∫ ∫ ∫

ψ
(λ)∗
ml (r1, θ1, φ)

[
Vl(r1, r2, R) +

l(l + 1)
r2

1

]
×ψ(λ)

m′l′(r1, θ1, φ)r2
1 sin θ1 dr1 dθ1 dφ. (2.5)

Diagonalization of this matrix yields eigenvalues and eigenfunctions of the one-
electron Hamiltonian valid in the range r1a 6 r1 6 r1b which at r1 = r1a reduce
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1486 Ch. Jungen, A. L. Roche and M. Arif

to a superposition of atomic functions ψI
l (r1a) as required by equation (2.1). These

eigenenergies and eigenfunctions depend on the boundary condition b(r1b) imposed
at the outer boundary r1 = r1b. b(r1b) may then be varied iteratively and, each time
an eigenvalue of H coincides with the desired total energy ε, an eigenvalue b of the
boundary condition corresponding to that particular energy has been found. This is
equivalent to the iterative eigenchannel R-matrix procedure of Fano & Lee (1973).

A more direct but otherwise equivalent method is the variational R-matrix scheme
such as formulated by Greene (1983). Here one solves a generalized eigenvalue system
which directly yields the set of eigenvalues bβ (β = 1, 2, . . .) for the boundary condi-
tion on the outer sphere r1 = r1b and any preselected total energy ε. The matrices
defining the generalized eigenvalue system are set up in terms of the Hamiltonian
matrix of equation (2.5) plus angular overlap integrals between the basis functions
of equation (2.4). Details are given in AJR.

The solution yields a set of coefficients aml,β associated with each bβ value, which
serve to construct the eigenfunctions valid in the reaction zone II in terms of the
basis of equation (2.4):

Ψ II
β =

∑
m,l

a
(λ)
ml,βψ

(λ)
ml , (2.6)

for each ε, R and λ.

(c ) Asymptotic zone III

The next step of the treatment requires matching the solutions Ψ II(λ)
β (ε, R) to

asymptotic separable channel functions. This procedure yields the desired reaction
matrix, equivalent to the scattering matrix, which subsequently is used for bound
state or scattering calculations.

At large electron distances the one-electron Hamiltonian corresponding to the
potential equation (2.2) becomes separable either in spherical coordinates centred
on the centre of mass of the molecule or in elliptic coordinates. We use the latter
since they allow the long-range core dipole field to be taken into account exactly.
As a result, we will find that the reaction zone II (radius r1b) can be taken to be
relatively small and the convergence of the calculations is thus facilitated. Expressing
V in terms of elliptic coordinates

ξ =
r1 + r2

R
(1 6 ξ 6∞), η =

r1 − r2

R
(−1 6 η 6 +1), φ = φ1, (2.7)

we find that for large r1 and r2 such that ξ � 1 > η,

V (r1, r2, R) ≈ − 4
R(ξ2 − η2)

{[
(Z1 + Z2) +

4
R3ξ3 (α1 + α2)

]
ξ − (Z(eff)

1 − Z(eff)
2 )η

}
,

(2.8)
with

Z
(eff)
2 = Z2

(
1− 2α1

R3 −
4α1α2

R6

)
, (2.9)

and where Z(eff)
1 is defined accordingly.

Equation (2.8) is a variant of the familiar electrostatic potential created by two
point charges. It contains an added radial polarization contribution and its angular
dependence is also modified by polarization effects through the appearance of two
effective charges Z(eff)

i which replace the usual integral charges Zi. The charge dif-
ference in equation (2.8) is related to the core dipole moment Q1 taken with respect
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Table 2. Pseudo-potential parameters for Ar− and Kr−

Ar · e− Kr · e−︷ ︸︸ ︷ ︷ ︸︸ ︷
l = 0 1 2 > 3 0 1 2 > 3

a
(l)
1 4.3312 4.2472 4.3463 4.3463 4.3248 4.2291 4.6754 4.6754
b
(l)
1 10.996 10.330 18.629 10.396 10.8930 10.3750 18.688 3.2451
c
(l)
1 1.4824 1.3981 2.0110 2.3454 1.4050 1.3710 1.6975 1.7617
r

(l)
1c 1.7178 1.8090 1.8161 1.8161 1.7344 1.8217 1.5571 1.5571

to the molecular midpoint,

Q1 = 1
2R(Z(eff)

2 − Z(eff)
1 ), (2.10 a)

or, for the diatomic rare gas hydrides,

Q1 = 1
2R

(
1− 2α1

R3

)
. (2.10 b)

Equation (2.10 b) expresses the fact that the polarization of the rare gas atom by the
nearby proton tends to reduce the molecular ion core dipole moment.

Numerical solution of the separable one-electron Schrödinger equation with the
potential of equation (2.8) yields dipolar angular functions Ỹl̃λ(η, φ) which are dipole
distorted spherical harmonics. Radial regular and irregular functions f̃l̃(ε, ξ) and
g̃l̃(ε, ξ) are evaluated as detailed in AJR.

With the asymptotic separable wavefunctions defined we next choose a value ξ0 in
order to match each solution Ψ II(λ)

β obtained in zone II for a given λ to the asymptotic
functions valid in region III. With ξ0 large enough so that equation (2.8) holds we
can use the following expansion:

Ψ II
β (ε, ξ0, η, φ) = Ψ III

β (ε, ξ0, η, φ)

≡
∑
l̃

Ỹl̃λ(ε, η, φ)
1√
ξ2

0 − 1
[f̃l̃(ε, ξ0)Il̃β(ε)− g̃l̃(ε, ξ0)Jl̃β(ε)]. (2.11)

(For the sake of clarity the indices λ and R on Ψ , f̃ , g̃, I and J are omitted here
and later.) I and J are determined by the requirement that equation (2.11) and its
derivative with respect to ξ be continuous at ξ = ξ0. This is done by first expanding
Ψ II
β (ξ0) and its derivative with respect to ξ in terms of the ‘surface harmonics’ Ỹl̃λ and

by subsequently using the fact that the Wronskian of f̃l̃ and g̃l̃ is ξ independent and
equal to 1/π (see AJR for details). The desired reaction matrix K or the equivalent
quantum defect matrix µ then becomes

K
(λ)
l̃l̃′

(ε, R) ≡ tanπµ(λ)
l̃l̃′

(ε, R) =
∑
β

Jl̃β(ε)I−1
βl̃′

(ε). (2.12)

The tan function in equation (2.12) is taken for each element individually.
The reaction matrix equation (2.12) can now be used as the input to a generalized

multichannel quantum defect treatment. Bound states are found by writing a general
superposition of asymptotic channel functions expressed in terms of K which now
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1488 Ch. Jungen, A. L. Roche and M. Arif

ε

r1

Figure 3. Radial box basis states (l = 0) for the R matrix calculation of KrH. The states shown
correspond to fixed logarithmic derivatives on both box boundaries. For r1 = r1a the condition
is chosen such as to ensure the continuity of the electron wavefunction ψl and of its derivative
across the boundary of the Kr atom. For r1 = r1b the condition is alternatively −ψ′l/ψl = +1
(full levels) or −1 (broken levels), as required by the variational R matrix procedure (cf. the
text).

Figure 4. Accumulated phase parameter β, in units of π, plotted as a function of the effective
principal quantum number ν = (−ε)−1/2 for l̃ = 0–4 and λ = 0. Full lines: numerical values
calculated with the potential equation (2.8) with parameters for KrH from table 2 and Z1 = 0,
Z2 = +1. The dotted lines correspond to the phase parameter β/π = ν − l for a Coulomb field,
used in ordinary quantum defect theory.

embodies all short-range scattering effect in regions II and I. Thus,

Ψ(ε) =
∑
l̃,l̃′

Ỹl̃λ
1√
ξ2 − 1

[f̃l̃(ε, ξ)δl̃l̃′ − g̃l̃(ε, ξ)Kl̃l̃′ ]Zl̃′(ε). (2.13)
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The Rydberg spectrum of ArH and KrH 1489

The expansion coefficients Zl̃(ε) must be chosen such that Ψ(ε) → 0 for ξ → ∞.
This leads to the familiar homogeneous linear system of MQDT (see, for example,
Seaton 1983), namely, ∑

l̃′

[tanβl̃(ε)δl̃l̃′ +Kl̃l̃′ ]Zl̃′(ε) = 0, (2.14)

for each l̃. Non-trivial solutions of equation (2.14) exist when the corresponding
determinant is zero. Such zeros occur only for discrete values of the energy, εn =
−1/ν2

n, for each value of λ. The corresponding defects µn = −νn(mod 1) will be
referred to below as ‘effective quantum defects’. The coefficients Zl̃′(εn) give the
channel mixing for each bound state. βl̃(ε) in equation (2.14) is the accumulated
phase parameter for each channel l̃ (whose dependence on λ and R is again not
indicated for the sake of clarity). This quantity measures the (generally non-integral)
number of half-oscillations of the radial wavefunction at the energy ε and is the
analogue of the familiar effective principal quantum number ν (times π) in the QDT
for pure Coulombic fields. As indicated in AJR, this generalized effective principal
quantum number must be evaluated numerically for each required energy in terms
of the functions f̃ and g̃.

Figure 4 illustrates the accumulated phase βl̃ as a function of ν = (−ε)−1/2 for
various l̃ values and λ = 0 for KrH (full lines). For comparison the familiar analytic
Coulombic phase parameter is also shown (dotted lines). IfK is neglected in equation
(2.14), energy eigenvalues occur whenever β/π is an integer > 1. As illustrated by
figure 4, this happens for a pure Coulomb field for integral ν = (−ε)−1/2 (hydrogen
atom levels), whereas for KrH the generalized QDT yields near-hydrogenic energies
for l̃ > 3, but characteristic l̃-dependent deviations for l̃ = 0, 1 and 2 which result
from the combined effect of the asymptotic dipole, quadrupole and higher multipole
moments, as well as polarization effects. The actual state energies depend, in addi-
tion, on the non-diagonal matrix K whose evaluation was the main subject of this
section.

3. Details of calculations

(a ) Effective electron rare gas atom collision energy
The potential energy of the molecular electron near the rare gas atom is obtained

by setting in equation (2.2) r2 ≈ R > r2c, θ2 ≈ 0 and taking the mean values
of sin θ1 and cos θ1 near the rare gas nucleus to be zero. Thus the classical kinetic
energy becomes

ε−Vl(r1, r2, R) ≈
[
ε+

2Z2

R
+
α2

R4

(
1− 2Z1 + 4

α1f1Z2

R3

)]
−
[
−2Z1

r1
− α1

r4
1
f2

1

]
. (3.1)

The second bracket [· · ·] (with Z1 = 0) is just the polarization potential of the rare
gas atom, while the r1-independent first bracket (with α2 set to zero) represents an
effective collision energy

ε1 = ε+
2Z2

R
. (3.2)

Equation (3.2) relates the molecular electron energy ε to the ‘local’ atomic collision
energy ε1. With Z2 = +1 and ε > −0.5 Ry, the effective collision energy turns out
to be positive as physically, of course, one expects. Specifically, if we are interested
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Figure 5. Elastic scattering phase shifts (in units of π) for Kr · e−. The energy (abscissa) is
in Rydbergs. Circles: ab initio values from McEachran & Stauffer (1984). Full lines: values
recalculated with the pseudo-potential equation (3.3) and the parameter values from table 2.
The double-headed arrow indicates the range of effective collision energies (equation (3.2)) which
is relevant to the bound state spectrum of KrH.

in bound states of RgH between ν ≈ 1.5 and ∞ with ε = −1/ν2, the corresponding
electron-rare gas atom collision energy ε1 ranges from ca. +0.3 to ca. +0.8 Ry.

(b ) Logarithmic derivatives −bl(r1a)
The logarithmic derivatives −bl(r1a) of equation (2.1) are the main dynamical

parameters of the problem. We determine them from the ab initio elastic electron-
rare gas atom scattering phase shifts of McEachran & Stauffer (1983, 1984).

In a first step we determine a set of single electron–atom interaction potentials
V

(core)
l (r1) which model the screening of the nucleus by the core electrons. The

pseudo-potentials are taken to have the following form

V
(core)
l (r1) = − 2

r1
[(Zn1−Z1)e−a

(l)
1 r1 +b(l)1 r1e−c

(l)
1 r1 ]+

α1

r4
1

[e(r1/r
(l)
1c )6−e−(r1/r1c)6

]. (3.3)

Zn1 is the charge of the bare rare gas nucleus while Z1 = 0 is the net charge of the rare
gas atom. The first two terms in equation (3.3) represent the screening, while the last
term makes the polarization potential cut-off l dependent. The pseudo-character of
the potential V (core)

l comes in through the l dependence of the parameters a(l)
1 , b(l)1 ,

c
(l)
1 and r

(l)
1c . V (core)

l (r1) is defined for all r1 > 0 and is added to the long-range
polarization potential V (P )(r1) ≈ −(α1/r

4
1)f2

1 (r1) from equation (3.1). V (core)
l be-

comes exponentially small outside the rare gas atom (r1 > (a(l)
1 )−1, (c(l)

1 )−1, r(l)
1c ),

but we do add its tail to the potential in zone II as indicated in equation (2.2). We
have fitted the values of the parameters a(l)

1 , b(l)1 , c(l)
1 and r

(l)
1c in a least-squares

treatment in such a way that for each l value the combined effective potential
V (P )(r1) + V

(core)
l (r1) + l(l + 1)/r2

1 represents the energy-dependent ab initio elas-
tic scattering phase shifts as accurately as possible. The resulting pseudo-potential
parameters for Ar and Kr are listed in table 2. Figure 5 illustrates the agreement

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The Rydberg spectrum of ArH and KrH 1491

s + d p p + d d – s d – p d f

Figure 6. Energy level diagram for ArH: (a) observed.

between the ab initio phase shifts (circles) and those recalculated by numerical inte-
gration of the radial Schrödinger equation with the parameters from table 2 (lines)
for Kr. The energy range relevant to the Rydberg spectrum of the hydride (cf. equa-
tion (3.2)) is indicated in figure 5 by a double-headed arrow. Notice the strong energy
dependence of the l = 0, 1 and 2 phase shifts in this region.

Using the pseudo-potentials thus defined, we now obtain each bl(r1a) (equa-
tion (2.1)) by straightforward outward numerical integration of the radial Schrödinger
equation in this potential from r1 = 0 to r1 = r1a. We have taken r1a = 1.4 both for
Ar and Kr and we have checked that the results of the calculation do not critically
depend upon this choice.

(c ) Rare gas polarizabilities and core dipole moment
Within the framework of our model the rare gas atom dipole polarizability is

related by equation (2.10 b) to the dipole moment of the corresponding rare gas
hydride ion core. The polarizabilities of the rare gases are known (cf. table 1) and
so are the ion core dipole moments which have been calculated ab initio by Klein
& Rosmus (1984). By inverting equation (2.10 b) and using their calculated dipole
moments, we can thus determine a set of ‘effective’ rare gas atom polarizabilities
which are appropriate for the atoms within the molecular environment. The ab initio
dipole moment values Q1 and the hence determined effective polarizabilities α(eff)

d are
listed in the second-to-last and in the last column of table 1, respectively. It can be
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s + p p – d p + d d – s d – p d f

Figure 6. Energy level diagram for ArH: (b) calculated.

seen that while the polarizability increases by a factor of 20 between He and Xe, the
effective values obtained with equation (2.10 b) are consistently close to the free atom
values, thus lending support to the assumption that the molecular ions RgH+ can
be viewed as protonated rare gas atoms. Table 1 shows further that the ‘effective’
values are systematically about 17% lower than the free atom values, indicating that
an atom-independent saturation effect occurs in the molecular rare gas hydride cores
similar to that found previously in the alkaline earth halides (cf. the discussion in
AJR).

In our calculations we used the reduced effective values α(eff)
d both in the pseudo-

potential equation (3.3) which defines the boundary condition at r1 = r1a and in the
molecular electron potential equation (2.2). Finally we took r1c equal to r

(l=0)
1c (cf.

equations (2.3) and (3.3)). The internuclear distance was taken as given in table 1.

(d ) R-matrix radii r1b, ξ0 and basis sets
The outer R matrix radii r1b, ξ0 and the basis sets equation (2.4) have been chosen

based on considerations and tests similar as detailed in AJR. The final calculations
were carried out with r1b = 12.08a0 and ξ0 = 8.0. The angular basis included values
l = λ− 4 with 19 radial functions with bl(r1b) = +1.0 and 2 functions with bl(r1b) =
−1.0 for each l value.
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Table 3. (a) 2Σ+ Rydberg series of ArH
(The ionization potential of the lowest stable state of ArH (ArD) is 27 530 cm−1

(27 570 cm−1)a,b. Each series is designated by ν (mod 1) of the highest observed state. The
spectral composition of each series is given for ν ≈ 5.)

0.83 2Σ+ 0.33 2Σ+ 0.16 2Σ+ 0.97 2Σ+

0.65s̃+ 0.57p̃+ 0.49d̃ 0.81p̃− 0.42d̃− 0.37s̃ 0.74d̃− 0.66s̃+ 0.11f̃ 0.97f̃ − 0.21d̃︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
νobs νcalc o− c νobs νcalc o− c νobs νcalc o− c νobs νcalc o− c

2.00a 2.01 −0.01 2.26a 2.19 +0.07 1.54 3.97b 3.98 −0.01
2.83a 2.84 −0.01 3.31b 3.27 +0.04 3.14a 3.12 +0.02 4.97

3.84 4.33b 4.29 +0.04 4.16a 4.14 +0.02 5.97
4.83b 4.85 −0.02 5.30 5.15 6.97

5.85 6.30 6.15
6.85 7.15

aData for ArH (Dabrowski et al. 1997a, b).
bData for ArD (Dabrowski et al. 1997a, b).

Table 3. (b) 2Π Rydberg series of ArH
(See table 3a for notation.)

0.31 2Π 0.69 2Π 0.98 2Π
0.93p̃+ 0.36d̃ 0.91d̃− 0.36p̃+ 0.18f̃ 0.98f̃ − 0.18d̃︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

νobs νcalc o− c νobs νcalc o− c νobs νcalc o− c

2.26a 2.27 −0.01 2.74a 2.66 +0.08 3.98b 3.98 +0.00
3.29b 3.29 +0.00 3.71b 3.62 +0.09 4.97
4.31b 4.30 +0.01 4.69b 4.59 +0.10 5.97

5.31 5.58 6.97
6.31 6.58

Table 3. (c) 2∆ Rydberg series of ArH
(See table 3a for notation.)

0.92 2∆ 0.99 2∆
0.98d̃+ 0.22f̃ 0.98f̃ − 0.22d̃︷ ︸︸ ︷ ︷ ︸︸ ︷

νobs νcalc o− c νobs νcalc o− c

2.92a 2.93 −0.01 3.99b 3.99 +0.00
3.88 4.99
4.84 5.99
5.83 6.99
6.83
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Figure 7. Energy level diagram for KrH: (a) observed.

Table 3. (d) 2Φ Rydberg series of ArH
(See table 3a for notation.)

0.02 2Φ
1.00f̃︷ ︸︸ ︷

νobs νcalc o− c

4.02b 4.01 +0.01
5.01
6.01

4. Results

(a ) Rydberg series
Tables 3 and 4 summarize the effective principal quantum numbers νn obtained for

the various values of λ for KrH and ArH and compare them with the corresponding
experimental values. The same data are represented graphically in the energy level
diagrams of Figures 6 (ArH) and 7 (KrH) and in the ν(mod 1) versus ν plots of
figure 8 (ArH) and figure 9 (KrH). The quantity ν(mod 1) (ordinate) is the effective
principal quantum number stripped of its integral part in front of the decimal point
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s + p p – d p + d d – s d – p d f

Figure 7. Energy level diagram for KrH: (b) calculated.

and corresponds to the negative of the effective quantum defect. Per unit interval of
ν, this quantity provides an enlarged view of the relative positions of the states.

Tables 3 and 4 and the effective quantum defect plots of figures 8 and 9 show that
the agreement between experiment and calculations is on the whole quite good. The
calculations predict correctly where the lowest state of each series occurs, i.e. which
is its ‘terminus’ state. The characteristic energy dependences at low ν, showing up in
figures 8 and 9 as curvatures of some of the quantum defect curves, are also correctly
reproduced. The mean deviation |νobs − νcalc| is 0.043 for ArH (19 electronic states)
and 0.036 for KrH (24 electronic states). The agreement is thus about a factor 1.5
worse than we found previously for CaF and BaF. The worst discrepancies occur
for the 0.69 2Π and the 0.33 2Σ+ series of ArH which are calculated too low by
∆ν ≈ 0.09 and 0.05, respectively.

The main components l̃′ occurring in the expansion equation (2.13) for ν ≈ 5
are listed for each series in tables 3 and 4. As expected, most of the series are
strongly l̃ mixed. Note that this mixing occurs in addition to the mixing due to
the asymptotic multipole field which causes each elliptic component l̃ to be itself
a mixture of spherical partial waves l. Thus it is clear that at least for low l it is
not possible to assign even approximate l values to the individual series. We note
nevertheless that the largest coefficients listed in tables 3 and 4 for the various
series correspond in all cases to l̃ values identical with the l assignments made by
Dabrowski et al. (1996) for ArH and by Dabrowski & Sadovskii (1994) for KrH. Our
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Figure 8. Rydberg series of ArH. ν(mod 1) of bound states is plotted versus ν, where ν is the
effective principal quantum number and ν(mod 1) = −µ with µ the effective quantum defect. The
abscissa thus represents the electron binding energy on the gross nonlinear scale ν = (−ε)−1/2.
For each unit interval the same information is represented on the ordinate on an enlarged scale.
The spectral composition of each series for high ν in terms of elliptic components l̃ is indicated
on the right. Circles: observed values. Full lines: calculated values. The value of the unstable
ground state, marked X, corresponds to the vertical ionization energy calculated for R = R+

e .
(a) 2Σ states. (b) 2Π states. (c) 2∆ states and 2Φ states.
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Figure 9. Rydberg series of KrH (cf. caption for figure 8).
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Table 4. (a) 2Σ+ Rydberg series of KrH
(The ionization potential of the lowest stable state of KrD is 27 727 cm−1a. Each series is des-
ignated by ν (mod 1) of the highest observed state. The spectral composition of each series is
given for ν ≈ 5.)

0.86 2Σ+ 0.38 2Σ+ 0.14 2Σ+ 0.96 2Σ+

0.61s̃+ 0.50p̃+ 0.46f̃ 0.86p̃− 0.35d̃− 0.33s̃ 0.75d̃− 0.65s̃+ 0.11f̃ 0.86f̃ − 0.38d̃− 0.31s̃︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
νobs νcalc o− c νobs νcalc o− c νobs νcalc o− c νobs νcalc o− c

1.99a 2.04 −0.05 2.27a 2.22 +0.05 1.58 3.96b 3.96 +0.00
2.85a 2.91 −0.06 3.33a 3.31 +0.02 3.14a 3.15 −0.01 4.95
3.86a 3.92 −0.06 4.36a 4.33 +0.03 4.14a 4.18 −0.04 5.95

4.93 5.36a 5.34 +0.02 5.20 6.95
5.93 6.38a 6.34 +0.04 6.20
6.93 7.20

aData for KrD (Dabrowski & Sadovskii 1994).
bData for KrD (Dabrowski et al. 1997a, b).

Table 4. (b) 2Π Rydberg series of KrH
(See table 4a for notation.)

0.38 2Π 0.63 2Π 0.97 2Π
0.95p̃+ 0.31d̃ 0.93d̃− 0.30p̃+ 0.22f̃ 0.98f̃ − 0.21d̃︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

νobs νcalc o− c νobs νcalc o− c νobs νcalc o− c

2.31a 2.36 −0.05 2.66a 2.60 +0.06 3.97b 3.97 +0.00
3.33a 3.36 −0.03 3.64a 3.59 +0.05 4.96
4.36a 4.38 −0.02 4.63a 4.59 +0.04 5.96
5.36a 5.38 −0.02 5.63a 5.59 +0.04 6.96
6.38a 6.38 +0.00 6.59

Table 4. (c) 2∆ Rydberg series of KrH
(See table 4a for notation.)

0.86 2∆ 0.98 2∆
0.97d̃+ 0.25f̃ 0.97f̃ − 0.25d̃︷ ︸︸ ︷ ︷ ︸︸ ︷

νobs νcalc o− c νobs νcalc o− c

2.86a 2.88 −0.02 3.98b 3.99 −0.01
3.83 4.99
4.79 5.99
5.78 6.99
6.78
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Table 4. (d) 2Φ Rydberg series of KrH
(See table 4a for notation.)

0.01 2Φ
1.00f̃︷ ︸︸ ︷

νobs νcalc o− c

4.01b 4.01 −0.00
5.02
6.02

Table 5. The lowest electronic states of ArH (cm−1)

present ab initio︷ ︸︸ ︷ ︷ ︸︸ ︷
obsa, T0 calcb o− c calcc o− c

X 2Σ+ −23951d −26859
2.00 2Σ+ 0 368 −368 0 0
2.26 2Σ+ 6092 4649 +1443 5323 +769
2.26 2Π 6074 6234 −160 4839 +1235
2.74 2Π 12905 12021 +884 12583 +322
2.83 2Σ+ 13783 13924 −141 12583 +1200
2.92 2∆ 14634 14747 −113 14115 +519
mean deviation 714 809

aData for ArH (Dabrowski et al. 1997a, b).
bR = 2.43 a0. Values obtained from the theoretical νn values and the experimental IP from
table 3.
cR = 2.50 a0 (Petsalakis & Theodorakopoulos 1994).
dR = 2.50 a0, ν = 1.46.

calculations thus confirm the l assignments of these authors and, in particular, the
revision proposed in 1994 for KrH.

The energy level diagrams of figures 6 and 7 illustrate the occurrence of ‘pseudo-l
complexes’ in the rare gas hydrides. The systematic near degeneracies of the n.33 2Σ+

and n.31 2Π ‘p’-type pairs of states are correctly reproduced, although the cal-
culations are not accurate enough to account quantitatively for the small 2Σ–2Π
splittings. By contrast, the larger 2Σ–2Π–2∆ splittings of the ‘d’-type triplets are
calculated correctly. The f series are discussed separately in §4 c.

(b ) Low electronic states
Tables 5 and 6 compare the observed and calculated energies (in wavenumber

units) of the lowest six stable states of ArH and KrH. In the case of ArH (table 5),
the latest MRD-CI ab initio calculations of Petsalakis & Theodorakopoulos (1994)
are also included. The mean deviation observed–calculated is of the order of 0.1 eV
both for ArH and KrH, for our calculations as well as the ab initio work.

Table 5 also compares our calculated value of the energy of the repulsive ArH
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Table 6. The lowest electronic states of KrH (cm−1)

present︷ ︸︸ ︷
obsa, T0 calcb o− c

X 2Σ+ −16231
1.99 2Σ+ 0 1358 −1358
2.27 2Σ+ 6480 5461 +1019
2.31 2Π 7216 8024 −808
2.66 2Π 12280 11494 +786
2.85 2Σ+ 14205 14768 −563
2.86 2∆ 14250 14497 −247
mean deviation 869

aData for KrD (Dabrowski & Sadovskii 1994).
bR = 2.68 a0. Values obtained from the theoretical νn values and the experimental IP from
table 4.

X 2Σ+ ground state at R = 2.5 a.u. with the ab initio value of Petsalakis & Theodor-
akopoulos (1994) which is seen to be about 2900 cm−1 lower than ours. This shows
that even the ground state is semi-quantitatively reproduced by our model. The
difference between the two calculations in terms of ν amounts to 0.04. No obvious
association of X 2Σ+ with any of the 2Σ+ series of ArH and KrH is apparent in the
quantum defect plots of figures 8a and 9a. According to the calculation the ground
states of the two molecules correspond to an antisymmetric linear combination of d̃
and s̃ waves and for this reason we have formally associated X with the 0.16 2Σ+

(0.14 2Σ+) series of ArH (KrH) in the tables and figures.

(c ) λ structure in the f complexes
A feature of particular interest is the λ structure of the quantum defects associated

with the nearly non-penetrating 4f electrons in ArH and KrH.
It has been known for a long time that in homopolar diatomic molecules the

splittings of the λ components of the states with l > 3 is for the most part due to
the core quadrupole and depends on the sign of the latter. More recently, Zon (1992)
and Watson (1994) showed that the dipole field in dipolar systems also contributes
and that this contribution arises in second-order perturbation theory and therefore is
proportional to the square of the dipole moment. For total core charge Z = Z1+Z2 =
1 the expression for the quantum defect µ is (Watson 1994)

µl,λ = − 2[l(l + 1)− 3λ2]
(2l + 3)(2l + 1)(2l − 1)l(l + 1)

(Q2
1 −Q2), (4.1)

where Q2 is the quadrupole moment and the combination (Q2
1 −Q2) is independent

of the choice of origin. According to equation (4.1) the dipole field always tends to
push the component l, λ = 0 up highest (negative quantum defect) and the l, λ = l
component down lowest (positive quantum defect). As discussed in detail in AJR, the
alkaline earth halides are examples where the dipole field dominates by far. ArH and
KrH are also rather strongly dipolar systems, but the ordering of the observed and
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calculated λ components given in tables 3 and 4 tells us that in the rare gas hydrides
the (positive) quadrupole moment is more important than the dipole moment.

The quantitative agreement between observations and calculations for the λ struc-
ture of the 4f complexes is quite reasonable both for ArH and KrH as an inspection
of tables 3 and 4 shows. The observed (calculated) overall splitting ν(4fφ)–ν(4fσ) is
+0.06 (+0.05), respectively, for KrH, and the observed (calculated) mean position of
all the substates is 3.98 (3.99), respectively. (The degenerate states with λ > 0 have
been counted twice here.) The corresponding observed (calculated) values for the
overall splitting in ArH are +0.05 (+0.03), respectively, and 3.99 (3.99) for the mean
ν value. The agreement thus obtained for these largely non-penetrating l̃ = 3 states
indicates that our description of the asymptotic core field must be about correct.
At the same time the spectral composition of these states given in tables 3 and 4
shows that significant l mixing is also present in spite of the relatively high l̃ value.
Indeed, unlike in CaF and BaF, equation (4.1) with Q1 and Q2 evaluated according
to the prescription of equation (2.10), is not a good approximation for the rare gas
hydrides and accounts for only about half of the observed overall splittings of the 4f
complexes. Note that the groups of states assigned to a d electron do not exhibit any
such simple ordering relationship: the energy level diagrams of figures 6 and 7 show
the δ above the π component for ν ≈ 3 in line with what we expect for a positive
quadrupole field, whereas the σ component (which should be lowest) is pushed up
highest due to interaction with the low-lying X precursor.

5. Spherical quantum defect matrices

The quantum defect theory of rovibronic Rydberg fine structure is based on trans-
formations from the body-fixed to the laboratory frame which allow the non-adiabatic
couplings between electronic and nuclear motions to be taken into account in an ele-
gant fashion. In practice the rovibronic quantum defect matrices are evaluated from
the purely electronic body-fixed matrices through a folding process with the appro-
priate frame transfomation matrices (see papers on this subject reprinted in Jungen
(1996)). In particular, the rotational transformation matrices are expressed in terms
of vector coupling coefficients. The elliptical electronic quantum defect matrices µl̃,l̃′
used in the present work for the calculation of the electronic structure can thus not
be transferred directly to the frame transformation scheme.

We return at this point to the R-matrix solutions Ψβ of equation (2.6) and their
elliptical asymptotic form equation (2.11). This latter equation is valid for any ξ > ξ0
with the coefficients Il̃β and Jl̃β determined for ξ = ξ0. We thus use equation (2.11)
to evaluate the R-matrix eigensolutions on a sphere r3 = r3c > r1b, centred on the
molecular centre of mass, which we chose large enough so that (with ξ � η and
ξ ≈ 2r3/R) we have V ≈ 2(Z1 + Z2)/r3, i.e. only the Coulomb term remains. Then
the matching procedure, equations (2.11)–(2.12), may be repeated with the difference
that all the tildes are omitted. Specifically, the asymptotic channel functions are now

Ylλ(θ, φ)
1
r3

[fl(ε, r3)Ilβ(ε)− gl(ε, r3)Jlβ(ε)], (5.1)

where the Y are ordinary spherical harmonics and the fl and gl are Coulomb ra-
dial functions as defined by Seaton (1983) (his functions s and c). The analogue
of equation (2.12) now yields spherical quantum defect matrices µ(λ)

ll′ (ε, R) which
are appropriate for use in the framework of the customary quantum defect–frame
transformation theory.
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Table 7. Spherical quantum defect matrices µ(λ)
l,l′ for ArDa

(The matrix elements involving l = 4 (g) channels are all smaller than ca. 0.006 and are not
given.)

s p d f

λ = 0 +0.09 −0.07 +0.11 −0.02
−0.27 −0.11 +0.04

−0.13 +0.03
+0.03

λ = 1 +0.24 +0.41 −0.15
+0.42 −0.19

+0.06

λ = 2 +0.17 −0.04
+0.01

λ = 3 −0.02

aR = 2.43 a0, ε = −0.04.

Tables 7 and 8 list the elements of these spherical quantum defect matrices for ArD
and KrD which we obtained in this way for an energy corresponding to ε = −0.040
(ν = 5). We found that r3c had to be taken of the order of ca. 50 a.u. in order to
obtain convergence. This radius gives us an idea of the ‘real’ size of the molecular
ion core, corresponding to the volume within which significant departures from the
field of an electric point charge occur. Note that a direct evaluation of the spherical
quantum defect matrix by an R-matrix calculation with rb = r3c would require a
vastly increased amount of computer time. We carried out similar calculations for
ε = −0.009 and ε = +0.040 and we found that the spherical µ matrices vary little
with energy. The matrices of tables 7 and 8 yield, when entered into the spherical
version of the secular equation (2.14) (Coulombic phase parameters β(ε) such as
represented by dotted lines in figure 4), the same eigenvalues νn near ν ≈ 5 as are
listed in tables 3 and 4. The matrices of table 7 are used in the work of Dabrowski
et al. (1997a, b) for the interpretation of the rotational fine structure of the 4f group
of states of KrD.

6. Discussion and conclusion

This work, together with that of AJR, has shown that our generalized ligand-
field approach to treat Rydberg molecules with composite double closed shell cores,
applies nearly as well to the rare gas monohydrides as to the alkaline earth halides.
All these molecules are rather strongly dipolar and most of the states calculated have
been found to be strongly l mixed. One reason for the success of the calculations is
no doubt the fact that asymptotically we are using elliptical angular and radial basis
functions which have the effects of the long-range dipole field fully built into them.
Thus we have been able to carry out the R-matrix calculations rather efficiently in
a restricted zone whose radius is only about 10 a.u..

The fact that the agreement between theory and experiment is not quite as good as
we found previously for CaF and BaF does not necessarily mean that our scattering
model is less appropriate for the rare gas hydrides than it was for the alkaline earth
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Table 8. Spherical quantum defect matrices µ(λ)
l,l′ for KrDa

(The matrix elements involving l = 4 (g) channels are all smaller than ca. 0.006 and are not
given.)

s p d f

λ = 0 +0.01 −0.03 +0.11 −0.02
−0.32 −0.13 +0.05

−0.19 +0.03
+0.04

λ = 1 −0.41 +0.33 +0.02
+0.30 −0.09

+0.05

λ = 2 +0.23 −0.05
+0.02

λ = 3 −0.02

aR = 2.68 a0, ε = −0.04.

halides. First of all, the lack of experimental data has not permitted us to convert
the experimental T0 values into vertical ionization energies as this was done by AJR,
by taking account of the slight differences between the vibrational frequencies and
equilibrium internuclear distances in the lower Rydberg states and the ion. Further,
the observed series do not extend to ν values as high as in the alkaline earth halides
so that the current values of the ionization potentials may not be as accurate as in
the alkaline earth halides. This may affect the higher observed ν values somewhat.
More importantly, the present calculations are based on purely theoretical electron-
rare gas atom scattering phase shifts and rare gas hydride ion dipole moments, and
their success depends crucially on the accuracy of these ab initio input data. It is
fair to say that by and large our calculations confirm the high quality of the ab initio
work of McEachran & Stauffer (1983, 1984) and of Klein & Rosmus (1984). We have
found, however, that a slight adjustment of the effective rare gas atom polarizability
α1 improves the agreement between experiment and theory for ArH considerably.
Substitution of α1 = 8.00 instead of 9.14a3

0 into equations (2.2) and (2.8) moves the
calculated 0.33 2Σ+ and 0.69 2Π ν(mod 1) values in figures 8a and 8b up near the
experimental points while affecting all the other series only a little. We do not report
these results in detail since our aim here was to test the predictive power of the
theory rather than obtaining perfect agreement with experiment at all cost.

Our goal for the future is to use the approach for the calculation of finer details
of the electronic structure of the rare gas hydrides as well as of the alkaline earth
halides, such as permanent and transition dipole moments, and spin-orbit coupling
effects. We also plan to apply the method to polyatomic molecules with composite
closed-shell cores such as small van der Waals complexes.
We thank Dr I. Dabrowski and Dr J. K. G. Watson (NRC, Ottawa) for letting us use their
results on ArD and KrD before publication.

References
Arif, M., Jungen, Ch. & Roche, A. L. 1997 J. Chem. Phys. 106, 4102–4118.

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1504 Ch. Jungen, A. L. Roche and M. Arif

Cuthbertson, C. & Cuthbertson, A. 1932 Proc. R. Soc. Lond. A 135, 40–47.
Dabrowski, I. & Sadovskii, D. A. 1994 Molec. Phys. 81, 291–326.
Dabrowski, I., Tokaryk, D. W., Vervloet, M. & Watson, J. K. G. 1996 J. Chem. Phys. 104,

8245–8257.
Dabrowski, I., Tokaryk, D. W. & Watson, J. K. G. 1997a J. Chem. Phys. (In the press.)
Dabrowski, I., Tokaryk, D. W., Lipson, R. H. & Watson, J. K. G. 1997b J. Chem. Phys. (In the

press.)
Fano, U. & Lee, C. M. 1973 Phys. Rev. Lett. 31, 1573–1576.
Greene, C. H. 1983 Phys. Rev. A 28, 2209–2216.
Herzberg, G. 1987 Ann. Phys. Chem. 38, 27–56.
Jungen, Ch. 1996 Molecular applications of quantum defect theory. Bristol: Institute of Physics

Publishing.
Klein, R. & Rosmus, P. 1984 Z. Naturf. a 39, 349–353.
McEachran, R. P. & Stauffer, A. D. 1983 J. Phys. B: At. Mol. Opt. Phys. 16, 4023–4038.
McEachran, R. P. & Stauffer, A. D. 1984 J. Phys. B: At. Mol. Opt. Phys. 17, 2507–2518.
Moore, C. E. 1971 Atomic energy levels, vol. I–III. Washington, DC: National Bureau of Stan-

dards.
Petsalakis, L. D. & Theodorakopoulos, G. 1994 J. Phys. B: At. Mol. Opt. Phys. 27, 4483–4489.
Rice, S. F., Martin, H. & Field, R. W. 1985 J. Chem. Phys. 82, 5023–5034.
Rosmus, P. 1979 Theoret. Chim. Acta (Berl.) 51, 359–362.
Rosmus, P. & Reinsch, E.-A. 1980 Z. Naturf. a 35, 1066–1070.
Seaton, M. J. 1983 Rep. Prog. Phys. 46, 167–257.
Watson, J. K. G. 1994 Molec. Phys. 81, 277–289.
Zon, B. A. 1992 Soviet Phys. JETP 75, 19–24.

Discussion
M. Child (Physical and Theoretical Chemistry Laboratory, University of Oxford,
UK). Is there any explanation for the fact that the σ states of BaF seem to be so
much more vibrationally perturbed than those for higher λ?

Ch. Jungen. σ orbitals are directed along the molecular axis and therefore are
sensitive to displacements of the nuclei. Vibronic interactions are the consequence.
In the terms of quantum defect theory one would say that the σ quantum defects
have the largest R-dependence.

R. W. Field (Department of Chemistry, MIT, USA). Dr Jungen suggested that one
of the CaF v+ = 0 2Σ+ states in the 14 < n∗ < 15 region is possibly locally perturbed
by a v+ = 1 state and that this is the reason for the larger discrepancies than he
found in your fit to the +Kronig symmetry than −Kronig symmetry states. Since
all 2Σ+ states belong uniquely to +Kronig symmetry (and all 2Λ other states exist
as a pair of + and −Kronig symmetry substates), deviations unique to +Kronig
symmetry are almost certainly due to a special case of interchannel perturbation
that affects only Σ+ states.

He is right! There are intrachannel perturbations of the type ∆v+ = −1, ∆n∗ =
+integer that are due to the internuclear distance dependence of the quantum defect
(Herzberg & Jungen 1972). The perturbation matrix element has the form

〈n∗, v+|H ′|−n, v+ +1〉 = [2 Re(4.106)(µω+
e )1/2]

(
dµ
dR

)
R+
e

[v+ +1]1/2[n∗(n∗−n)]−3/2,

where the first [ ] contains all constants that are needed to give the matrix element
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Table 9.

n∗ 15.92 14.56 13.12 11.53 9.71 7.37
n 6 5 4 3 2 1

in cm−1 and the quantum defect derivative in Å−1 (for CaF2, the reduced mass, µ,
in amu is 12.89 and ω+

e = 685 cm−1, thus the first factor in [ ] is 9590 cm−1 Å−1),
(dµ/dR)R+

e
is the quantum defect derivative evaluated at the equilibrium internuclear

distance of the ion core R+
e = 1.874 Å, [v+ + 1]1/2 is the v dependence of the usual

harmonic oscillator matrix element of the normal displacement coordinate and the
final factor is the usual n∗−3/2 amplitude-in-the-core Rydberg scaling rule (Herzberg
& Jungen 1972).

The intrachannel ∆v+ = −1 perturbations occur at n∗ values where ∆G1/2 =
R[(n∗ − n)−2 − (n∗)−2], the vibrational spacing is equal to the electronic spacing.
The n∗ values for CaF, which has ∆G1/2 = 683 cm−1, occur as specified in table 9.
The only core-penetrating state (Murphy et al. 1990) affected by an intrachannel
perturbation in the 14 < n∗ < 15 region is the 0.55 2Σ+ state! This state belongs to
the Rydberg series that terminates (at low n∗) on the X 2Σ+ electronic ground state
of CaF. This is a nominally sΣ series. Owing to the strongly penetrating, strongly
shielding nature of the s series, the quantum defect derivative for this series is likely to
be among the largest of all core-penetrating series. We have observed other examples
of intrachannel ∆v+ = −1 perturbations in CaF (Murphy 1992), the largest of
which is between 7.36 2Πv = 0 and 6.36 2Πv = 1 for which a perturbation matrix
element of 21.9 cm−1 (dµ/dR = +0.732 Å−1) was observed (Gittins 1995). Using the
Rydberg scaling law, and a crude estimate (C. M. Gittins, personal communication)
of dµ/dR for the 0.55 2Σ series of 0.18 Å−1, the perturbation matrix element for the
14.55 2Σ+v+ = 0 state is estimated to be 〈14.55 2Σ+v+ = 0|H ′|9.55 2Σ+v+ = 1〉 ≈
1.1 cm−1.

It is interesting to note that these intrachannel ∆v+ = −1 perturbations will be
repeated, with minor modifications, for every value of v+. The modifications are
that, as v+ increases, (i) the matrix elements increase as (v+)1/2, and (ii) ∆v+1/2
decreases, so the N = 0 energy gap between the 9.55 2Σ+v+ = 2 perturber and
the 14.55 2Σ+v+ = 1 state is smaller than that between the corresponding v+ = 1
perturber and v+ = 0 state. The result is that, if an intrachannel perturbation occurs
at finite N for v+ = 0, it will be stronger and occur at lower N for v+ = 1, etc.,
until the vibrational anharmonicity eventually shifts the perturbation to N < 0 and
the effect of the intrachannel interaction begins to vanish.

R. N. Dixon (School of Chemistry, University of Bristol, UK). Dr Jungen’s intro-
duction to the history of molecular Rydberg spectroscopy implies that there was a
long gap between the development of the basic theory for atoms and its application
to molecules. Certainly, it was a long time before there was a good theoretical un-
derstanding of molecular Rydberg states. However, Dr Jungen’s view was that of
the theoretician and there were substantial experimental advances in the interim.
Professor W. C. (Bill) Price, F.R.S. (1910–1993) must surely be considered to be
the ‘father’ of experimental Rydberg spectroscopy and this discussion would not be
complete without reference to his contribution.

In 1932, Bill Price went to Johns Hopkins University, Baltimore, on a Common-
wealth Fund Fellowship, where he came under the influence of G. H. Dieke, A. H.
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Pfund and R. W. Wood. Here he pioneered the techniques to study molecular spec-
troscopy in the vacuum ultraviolet (λ < 200 nm) and applied them to a wide range
of molecules. His first great surprise was that the rich spectrum of acetylene bands
between 105 and 152 nm could be interpreted in terms of the standard Rydberg
quantum defect expression, and was the first to apply this to molecules. Professor
R. S. Mulliken of Chicago quickly got in touch with him as soon as the first results
were published—an interaction which lasted throughout their lives.

By 1936, Bill Price had published no fewer than 14 papers on molecular Rydberg
spectroscopy, covering the molecules of O2, C2H2, C2H4, HCN, CH3I, C2H6, CH3Br,
CH3Cl, H2CO, alkyl alcohols, alkyl mercaptans, C2H5Br, C2H5Cl, C2H6 and C2D6.
He had also published with Sydney Chapman a review article on the implications of
this new spectroscopy for the understanding of the upper atmosphere. This research
continued in Cambridge when Price returned to England and laid firm foundations
for all the recent work in the field of this discussion.

Ch. Jungen. In my introduction (omitted in the printed version of the paper) I
said that ‘Balmer established his famous empirical formula describing the energy
levels of the hydrogen atom in 1885. Only four years were to pass until 1889 when
Rydberg was able to establish the modified formula which bears his name, thereby
implicitly introducing the concept of the ‘quantum defect’. As every physics student
knows, Rydberg’s discovery was based on the sodium atom in which he observed the
s, p, d and f series of states. It took no less than 77 years before a correspondingly
‘complete’ system of Rydberg states was established in a molecule: in 1966 Miescher
published an energy level diagram of the NO molecule and a list of corresponding
quantum defects, which turned out to be quite similar to those known for the Na
atom. The reason for this long delay is that, unlike in atoms, molecular Rydberg
series are rarely directly observed as such. Rather they emerge from careful and
extended fine structure analyses which take account of the nuclear degrees of freedom
of the system studied, the molecular vibrations and rotations. As Miescher already
recognized in his pioneering work on NO, the complications due to the presence of the
nuclear degrees of freedom in molecular systems include the coupling of electronic
and rotational-vibrational motions, in other words, the breakdown of the Born–
Oppenheimer approximation, which disrupts the regularity of atom-like Rydberg
structure as the ionization limit of a molecule is approached.’ I think that because
he based his work on detailed rotational analyses and took account of the breakdown
of the Born–Oppenheimer approximation, Miescher went far beyond the scope of the
earlier Rydberg spectroscopy. It is also fair to mention that Miescher carried out most
of his experiments in the laboratories of the Canadian National Research Council
in Ottawa where A. E. Douglas and G. Herzberg had initiated the construction of
several new high-resolution spectrographs.
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